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Formulas have been developed to calculate the forces in a molecular system directly, rather
than indirectly through the agency of energy. This permits an independent calculation of the
slope of the curves of energy vs. position of the nuclei, and may thus increase the accuracy, or
decrease the labor involved in the calculation of these curves. The force on a nucleus in an
atomic system is shown to be just the classical electrostatic force that would be exerted on this
nucleus by other nuclei and by the electrons' charge distribution. Qualitative implications of
this are discussed.

'ANY of the problems of molecular structure entire process is repeated for a new nuclear
are concerned essentially with forces. The position, and the new value of energy calculated.

stiffness of valence bonds, the distortions in Proceeding in this way, a plot of energy vs.
geometry due to the various repulsions and position is obtained. The force on a nucleus is
attractions between atoms, the tendency of of course the slope of this curve.
valence bonds to occur at certain definite angles The following method is one designed to
with each other, are some examples of the kind obtain the forces at a given configuration, when
of problem in which the idea of force is para- oply the configuration is known. It does not
mount. require the calculations at neighboring configura-

Usually these problems have been considered tions. That is, it permits a calculation of the
through the agency of energy, and its changes slope of the energy curve as well as its value,
with changing configuration of the molecule. for any particular configuration. It is to be
The reason for this indirect attack through emphasized that this allows a considerable saving
energy, rather than the more qualitatively illumi- of labor of calculations. To obtain force under the
nating one, by considerations of force, is perhaps usual scheme the energy needs to be calculated
twofold. First it is probably thought that force for two or more different and neighboring con-
is a quantity that is not easily described or calcu- figurations. Each point requires the calculation
lated by wave mechanics, while energy is, and of the wave functions for the entire system.
second, the first molecular problem to be solved In this new. method, only one configuration, the
is the analysis of band spectra, strictly a problem one in question, need have its wave functions
of energy as such. It is the purpose of this paper computed in detail. Thus the labor is consider-
to show that forces are almost as easy to calculate ably reduced. Because it permits one to get an
as energies are, and that the equations are quite independent value of the slope of the energy
as easy to interpret. In fact, all forces on atomic curve, the method might increase the accuracy
nuclei in a molecule can be considered as purely in the c'alculation of these curves, being especially
classical attractions involving Coulomb's law. helpful in locating the normal separation, or
The electron cloud distribution is prevented position of zero force.
from collapsing by obeying Schrodinger's equa- In the following it is to be understood that the
tion. In these considerations the nuclei are nuclei of the atoms in the molecule, or other
considered as mass points held fixed in position. atomic system, are to be held fixed in position,

A usual method of calculating interatomic as point charges, and the force required to be
forces runs somewhat as follows. applied to the nuclei to hold them is to be

For a given, fixed configuration of the nuclei, calculated. This will lead to two possible defini-
the energy of the entire system (electrons and tions of force in the nonsteady state, for then
nuclei) iscalculated. Thisisdonebythe variation the energy is not a definite quantity, and the
method or other perturbation schemes. This slope of the energy curve shares this indefinite-
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FORCES IN MOLECULES

ness. It will be shown that these two possible
definitions are exactly equivalent in the steady-
state case, and, of course, no ambiguity should
arise there.

Let X be one of any number-of parameters
which specify nuclear positions. For example,
) might be the x component of the position of
one of the nuclei. A force fq is to be associated
with X in such a way that fzdX measures the
virtual work done in displacing the nuclei
through dX. This will define the force only when
the molecule is in a steady state, of energy U,
for then we can say fz= BU—IBX. In the non-
steady-state case we have no sure guide to a
definition of force. For example, if U = J'Q*HPdv
be the average energy of the system of wave
function P and Hamiltonian H, we might define

f), ' = B(U—)/BX'

Or again, we might take f&, to be the average of
BH/BX o—r

BII &II
Jp (2)

Now

whence,

8 V p BII

B) J B)

U= ~~Q*HPdv,

We shall prove that under steady-state con-
ditions, both these definitions of force become
exactly equivalent, and equal to —BU/BX, the
slope of the energy curve. Since (2) is simpler
tha, n (1) we can define force by (2) in general.
In particular, it gives a simple expression for the
slope of the energy curve.

Thus we shall prove, when HP = UP a,nd
J'PP*dv = 1 that,

But HP= UP and HP*= UP* so that we can
write,

BU I' BIZ r Bg* p BPP—dv+ U I Pdv+ U I
—P~dv.

ax ~ ax ~ ax ~ ax

These last two terms cancel each other since
their sum is,

U—
~

I P*Pdv = U—(1)= 0.
ax~ 8)

Whence

in the steady state. This much is true, regardless
of the nature of H, (whether for spin, or nuclear
forces, etc.). In the special case of atomic systems
when II= T+U where T is the kinetic energy
operator, and V the potential, since BH/BX
=BV/B we can write

BU p BV
f~'=f&, =-

BR BX

The actual calculation of forces in a real
molecule by means of this theorem is not im-
practical. The JP~g(BV'/BX)dv is not too differ-

ent from J'/*& Vdv, which must be calculated if
the energy is to be found at all in the variational
method. Although the theorem (3) is the most
practical for actual calculations, it can be
modified to get a clearer qualitative picture of
what it means. Suppose, for example, the system
for which P is the wave function contains several
nuclei, and let the coordinates of one of these
nuclei, 0, be X, Y, Z or X„where p=1, 2, 3,
mean X, Y, Z. If we take our X parameter to be
one of these coordinates, the resultant force on
the nucleus o. in the p direction will be given
directly by

BU r BH r Bp* Bf
Pdv+ I Hgdv+ P*H dv. —

8) ~ BX ~ BX ~ 8) f„=—
) PP*(BV/BX„)dv

Since II is a self-adjoint operator,

BP fBQ
P*H dv = I HP "dv.— —

8) ~ a).

from (3).
Now V is made up of three parts, the inter-

action of all nuclei with each other (V ~), of each
nucleus with an electron (Vp;), and of each
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electron with every other (V;;); or

V=K V-»+E V~'+Z V*~.

the electron charge density distribution for all

electrons,

a, p p, i ~(x) = E~*(x)
Suppose x„' are the coordinates of electron i,

and as before X„ those of nucleus n of charge q .
Then Vp;=ape/Rp;, where

Rp ——P (X„~—x„')'.

It is possible to simplify this still further.
Suppose we construct an electric field vector F
such that

V' F= —47rp(x); V'XF=O.

So we see that

8 Up; 8 Up;= —8p-
Bxp

Then (3) leads to

BU;;
and that — =0.

BX„

Now from the derivation of E„we know that it
arises from the charge q on nucleus a, so that
V' E = 0 except at the charge n where its integral
equals q . Further,

BV p
=g.[QE„~]a»z .

p BX~ p

BU; pBV pf;=+ "40*2 d~ —2 I' 44*d—»

'8x„' p ~ BX„
Then

BV p=+—
~

F„(V E„-)dv —g
4m. ~ p Bx„

since BV;/Bx~' does not involve any electron
coordinate except those of electron i JiJ. d'v'

means the integral over the coordinates of all
electrons except those of electron i. The last
term has been reduced since 8V p,/'Bx„does not
involve the electron coordinates, and is constant
as far as integration over these coordinates goes.
This term gives ordinary Coulomb electrostatic
repulsion between the nuclei and need not be
considered further. Now eJ'ifPPdv is just the
charge density distribution p;(x) due to electron i,
where e is the charge on one electron. The
electric field E„(x') at any point x' due to the
nucleus Q. is (1/e)BV;/Bx„', so that (4) may be
written

=g.[F„]a»"+»I.[QE„~].» '

the transformation of the integral being accom-
plished by integrating by parts. Or finally, the
force on a nucleus is the charge on that nucleus
times the electric field there due to all the
electrons, plus the fields from the other nuclei.
This field is calculated classically from the
charge distribution of each electron and from
the nuclei.

It now becomes quite clear why the strongest
and most important attractive forces arise when
there is a concentration of charge between two
nuclei. The nuclei on each side of the concen-
trated charge are each strongly attracted to it.
Thus they are, in effect, attracted toward each
other. In a H~ molecule, for example, the anti-
symmetrical wave function, because it must be
zero exactly between the two H atoms, cannot
concentrate charge between them. The sym-
metrical solution, , however, can easily permit
charge concentration between the nuclei, and
hence it is only the solution which is sym-
metrical that leads to strong attraction, and the
formation Of a molecule, as is well known. It is

BV pf;=J~[Zs'(x)]E;(x)ds
p BX„

The 3X space for X electrons has been reduced
to a 3 space. This can be done since E„(x')
depends only on x' and is the same function of x'
no matter which i we pick. This implies the
following conclusion:

The force on any nucleus (considered fixed) in

any system of nuclei and electrons is just the
classical electrostatic attraction exerted on the
nucleus in question by the other nuclei and by

f BV p
&V.; p p &V.p f„=——

~l (7 F)E„dv
i

~

44*d~ d~-2—(4) p Bx„~
' Bx„' ~ ~ pBX„
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clearly seen that concentrations of charge be-
tween atoms lead to strong attractive forces, and
hence, are properly called valence bonds.

Van der Waals' forces can also be interpreted
as arising from charge distributions with higher
concentration between the nuclei. The Schrod-
inger perturbation theory for two interacting
atoms at a separation R, large compared to the
radii of the atoms, leads to the result that the
charge distribution of each is distorted from
central symmetry, a dipole moment of order
1/'R' being induced in each atom. The negative

charge distribution of each atom has its center of
gravity moved slightly toward the other. It is
not the interaction of these dipoles which leads
to van der Waals' force, but rather the attraction
of each nucleus for the distorted charge dis-
tribution of its own electrons that gives the
attractive 1/R' force.

The author wishes to express his gratitude to
Professor J. C. Slater who, by his advice and
helpful suggestions, aided greatly in this work.
He would also like to thank Dr. W. C. Herring
for the latter's excellent criticisms.
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An experiment has been designed to detect the contribution of intercrystalline thermal
currents to the internal friction of polycrystalline metals. In accordance with a theory devel-
oped by one of the writers (C.Z.), the internal friction is a maximum when the vibration is

partly isothermal and partly adiabatic with respect to adjacent grains. By passing in small
steps from the nearly isothermal case of very small grain size through maximum internal
friction to the nearly adiabatic case of large grain size, one can detect the relative importance
of the intercrystalline thermal currents. Such an experiment has been performed on single
phase 69—31 brass, with mean grain size ranging in small steps from 0.0006 cm to 0.4 cm, and
with frequencies of 6000, 12,000 and 36,000 cycles per second. Not only was a maximum ob-
tained with the anticipated grain size, but the maximum is of a larger order of magnitude than
the background upon which it is superimposed. The internal friction in the extreme isothermal
case (Q&300,000) was lower than has ever been observed for metals; in the extreme adiabatic
case it approached the low values obtained for single crystals. This experiment indicates that
in annealed nonferromagnetic metals at room temperature, intercrystalline thermal currents
are the dominant cause of internal friction measured at small strains, aside from possible
macroscopic thermal currents.

f1. INTRODUCTION

HE term internal friction refers to the capac-
ity of a solid to transform its ordered energy

of vibration into disordered internal energy. One
of the authors (C. Z.) has recently made a start
at understanding the mechanism of this trans-
formation. ' ' ' His basic idea was that the direct
coupling between the macroscopic and the in-

~ This research was supported by a grant from the
Penrose Fund of the American Philosophical Society, and
by a grant from the Rumford Fund of the American
Academy of Arts and Sciences.' C. Zener, Phys. Rev. 52, 230 (1937).' C. Zener, Phys. Rev. 53, 90 (1938).

3 C. Zener, Proc. Phys. Soc. (in print).

ternal coordinates may be treated by examining
the thermoelastic effects which accompany vibra-
tion. Thus the increase in internal energy per
cycle is equated to the temperature times the
increase in entropy per cycle. The increase in

entropy per cycle is obtained by studying the
thermal currents which How back and forth
during vibration between stress inhomogeneities.

If these thermal currents are able nearly to
maintain temperature equilibrium between the
stress inhomogeneities, the vibration proceeds
isothermally with little internal dissipation of
energy. In the other extreme case of adiabatic
vibration, the internal dissipation of energy is


